Ph.D. Student Zhen TAN Paris Nanterre University Supervised by Shah Nawaz BUROKUR

Metagratings for wavefront manipulation

Motivations:

Conventional metasurfaces show efficiency limitations for extreme wave transformations, requiring complex fabrication. The innovative **metagrating** concept simplifies fabrication procedure. Operating in the few-diffraction order regime,

I. Anomalous reflection and beam splitting

metagratings are capable of
efficiently manipulating EM
wave for high-performance
wavefront transformations.

Methodologies:

• Far field equation (For determining wavefront manipulation)

 $E_m = E^{rt} + E^{sca}(I)$ $E_m: \text{ Electric field of the } m^{\text{th}} \text{ diffraction}$ order

E^{rt}: Reflection/transmission field of the excitation

E^{sca}(**I**): Radiation field of line currents

Near field equation (For

Realized model

II. Anomalous refraction and reflection

III. Wave absorption

designing surface structure)

$$Z_q I_q = E^{ext} - \sum_{p=1}^N Z_{qp} I_p$$

- Z_q : Load impedance of the metaatom
- **E**^{ext}: External field of the excitation
- Z_{qp} : Self/Mutual impedance
- *I_q*/*I_p*: Amplitude of line currents
- Analytical design steps
 Solving for the line current *I* from the far-field equation
- ② Substituting the current *I* into the near-field equation to solve

for the load impedance Z_q

Backward illumination

Conclusions:

- Extremely high wavefront manipulation efficiency
- Sparse and simple structures

Perspectives:

Metagratings open the door to potential applications in future wireless communication, radar detection, electromagnetic stealth and so on.

