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posite materials: light-weight alternatives to metals (reduced fuel consumption for the same
ormance — economic)

tinuous fibre composite reinforcements: key component in many composite applications,
dergo a specific deformation during the forming process, deformed before resin injection/
ardening

umerical tools: allows for new designs to be tested without going through real-life expensive

axperimentation and should retrieve:

* the material properties after deformation;

e the final fibre orientation:

~ * development of defects (wrinkling, yarn slippage/fracture, etc)
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Advanced Composites

Preforming the fabric

Draping of a carbon-fibre
reinforcement [2]

Resin injection

Material composition of a Boeing 787 [1]

Resin transfer moulding [3]

» Multiscale problem: material behaviour characterised by:
* Interactions between microscopic fibres that comprise the yarn;
* Yarn individual properties and processing patterns at mesoscale (weaving pattern, stitching, etc)
*  Geometry of the deformed fabric at the macroscale

» No globally accepted model exists:

* Discrete models better describe the deformation at higher computational cost
* Continuous models show smaller accuracy but are much cheaper computationally

textile
reinforcement

fibres
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Processing of yarns. From left to right: plain weave, twill weave,

Continuous fibre reinforcement different interlock, non-crimped fibre [4]

scales [3]

» Goal: improve existing numerical tools for draping simulation at the macroscale level
» Implementation: In-house finite element code with 3-node elements
» Programming languages: Matlab, Java

Experimental tests

» Specific tests allows us to characterise different behaviours

» Tensorial behaviour: characterised by the biaxial test, assumed linear
* Stiffness is really high and fibres hardly stretch before breaking (quasi-inextensible fibres)

T114— Q O Q —>T11

Strain
Biaxial test on a cross-shaped specimen and load-strain curve for carbon twill weave (k = ¢,,,.,/€,.) [5]

> In-plane shear behaviour: characterised by the picture frame and the bias extension tests, non-
linear behaviour
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Picture frame and bias extension tests [3] In-plane shear angle [°]

Constitutive law for Hexcel 1151

» Bending behaviour: characterised by different tests with different models proposed, assumed

linear
* stiffness is very low, included to better predict wrinkling [4]
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Pierce cantilever test [0] De Bilbao cantilever test [7]
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» Continuous fibre reinforcement stacks:

* Lines initially normal to the mid surface do not remain normal after deformation as layers can slip and fibres
cannot extend

* Thickness varies during deformation

3-point bending of a laminate stack [8]

Deformation of multi-layered reinforcements [8]

Modelling

» The tissue reinforcements are considered a continuous medium
» The equilibrium equations are obtained with the virtual work method, with each deformation mode
being uncoupled from each other [5, 9]

5Wacc — 6We$t — 6Winta 5Wznt — 6Wt + 5Wzs =+ (5Wob + 6Wts + 6Wc + 6Wzb (1)

» The finite element method is used to approximate the equilibrium equations

Mu+Cu= iea:t - Lint (2)

» The equations are solved with a central difference scheme
W = " AT 2 A =t g (3a)
a2 = gn= e L A g A = gt e e (3b)

» Simulation of the bias extension test with a 2D finite element: hyperelastic model for
membrane (6W,, 6W.,) [10]

== Analytical solution
7 [~ Simulation
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Simulation of a bias extension test

» Simulation of a multi-layered reinforcement with a constant-thickness 3D finite element:
semi-discrete model for membrane (6W,, 6W.,) and a Kirchhoff-Love plate for bending (6W,,) [8]

Simulation of the deformation of a multi-layered reinforcement [8]

Conclusions and on-going work

» 3-node finite elements were implemented in
Matlab and Java

> In development: ED-1 based finite element for
variable thickness with hyperelastic membrane el —
(W, SW.), Kirchhoff-Love plate for bending IR [
(0W ,) and 1-D elasticity for compaction

51

ED-1 based finite element under development
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